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Intermodulation products of a dual carrier distorted by a zero-memory non-
linearity F are calculated. Conversely, given certain of the intermodulation (IM)
coefficients, the odd part F, of the nonlinearity can be recovered. If the coefficients
decrease fast enough, then F, is analytic. The value of F, is explicitly calculated
for two cases of exponentially decreasing intermodulation products.

l. Introduction

This report is part of a study of intermodulation prod-
ucts (IMPs) which have been observed in dual-carrier tests
at DSS 14 (Ref. 1). The main feature of the data on IMP
amplitudes is that the amplitude of the nth IMP (counting
away from the dual-carrier midfrequency) falls off expo-
nentially with n. The data on the dependence of IMP
amplitude on carrier power are much more tenuous.

It has been proposed that the IM distortion can be
accounted for by nonlinear current—voltage characteristics
of metal oxide contacts at bolted joints in the antenna
structure. The present article describes analytically what
sort of zero-memory characteristics could give rise to the
observed IMP data. No physical assumptions are made.
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The main mathematical tool is Chebyshev transform
inversion, as described by N. Blachman (Ref. 2). This tool
was created for the study of harmonic distortion, but we
will see that it is also very useful for the study of IM
distortion.

Il. Formulas for Intermodulation Products

Given a zero-memory nonlinearity y = F (x), —L <=x
< L, let the input be the symmetric dual carrier

ot

x(t) = = v (coS w1t -+ cOS wst)

9
= ¥ COS w,f COs w_t
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where

0=v<L
O<m1<m2
1
w+=§(a)1+w2)
1
w,:—z—(mz—‘wl)

The output is then
y (t) = F (v cos w,t cos o_t)

If —L < v < L andF, let us say, is bounded and Borel
measurable on [ —v, v], then the function F (v cos 4 cos ¢)
of the variables § and ¢ has a double Fourier series:

F (v cos 0 cos ¢) ~ Z Z cuv (V) cos (uf + vep)

f=-00 ¥V=-00

where

cuw () = (471'2)_1/“ / F (v cos 8 cos ¢) cos (pf + ve) db d¢

The IMP of index (p, v) (0, 0) is
2cuy (0) cos (po, + vo )t
The IMPs with which we are concerned are
21, 2n+1 (V) €08 {0y + 1 (0 — 01)) 1, n=12 ---

(Note that ¢, ., = 0.)

Write f, to mean the odd part of a function f; that is,

fo ) = 3 (F) — £(~2)

After exploiting symmetrics, we get

cw (v) = (1/7%) /wd¢ cos qu/%ﬂ-dO cos ) F, (v cos 6 cos ¢)
(1)
lll. Inversion of the MappingF,— {c,, (v)}

We would like to deduce properties of F from properties
of the ¢,, (v). Equation (1) shows that we can get informa-
tion about only the odd part of F.
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Let us adopt some notation for the inner integral of
Eq. (1). Forn=10,1,2, - - -, define an operator T, by

Yom
(T.f) (x) = (2/77)/0 f (x cos 8) cosnd df (2)

Blachman (Ref. 2) calls this the nth-order Chebyshev
transform. (However, he integrates from 0 to =; the defini-
tion above makes T, and T, one-one.) Then

T

¢ () = (2x) / (T, F,) (vcos ¢) cos ve do (3)

J T

is just half the vth cosine coefficient of (T, F,) (v cos ¢); i.e.,

(T, F,) (vcos ¢) ~ 2 Z ¢1v (V) cOs v (4)

Thus, if we can sum the series in Eq. (4), we can get
T, F,. Then, as Ref. 2 shows, F, can easily be obtained
from T, F,. Let us make precise the information we need
here. Denote by B, the space of bounded Borel measur-
able functions on [ —v, v], and by A, the space of functions
analytic in a neighborhood of [—uv, v]. Then T, takes B,
and A, into themselves.

Proposition 1. (a) If f, ge B, and T,f = T,g almost
everywhere, then f = g almost everywhere.

(b} T.: Ay — A, has a two-sided inverse U, : A, — A,
given by

Yo
wwm=£ (tF (8)) (x cos ) df 5)

(c) If feB, and T.f € A,, then f is almost everywhere
equal to the analytic function U,T,f.

The notation in Eq. (5) means that the function (¢f (¢))
is to be evaluated at t = x cos 6. Proposition 1 is proved in
the Appendix.

We know now that if T,F,, as determined by Eq. (4), is
analytic on [ —uv, v], then F, is also analytic on [—uv,v],
and can be got by applying U, to T,F,.

Fortunately, the IMP data indicate that the ¢, decay
exponentially with v. This is just the condition we need
to show that T,F, is analytic on [—v, v].

Proposition 2. Let f be a bounded Borel measurable
function on [—1,1]. Then f is (essentially) analytic on
[ —1,1] if and only if the coefficients

¢y = (2m) / ' f(cos$)e "t ds (6)
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satisfy

(%) lev] = AplYl, — o0 < v < oo, for some A and p with
A>0,0<p< 1

Proof. Let p (w) = (w + wt)/2.

Let f be analytic in a neighborhood @ of [ —1, 1]. Define
g(w) =f(p(w)), weQ. Then g is analytic in an annulus
G, = {w: r* < |w| < r}, and so has a Laurent series that
converges there. Since g(e'?) = f(cos ¢), the ¢, are the
Laurent coeflicients of g. Hence

Slew|<w for i< |w| <7

This implies (¥¢).

Conversely, assume (5Y). Define

g(w) =3 oy w

Then again g is analytic in some annulus G,, and
g (e'?) = f (cos ¢). If |w| =1 then g (w) = g (w™?). By

analytic continuation, this must hold everywhere in G..
Since

(z+iV1I—29)(z—iV1—28) =1

it follows that
glz+iV1—2)=gkz—iV1—2) (7

for all zep (G,), a region that contains [-1, 1]. Thus
Eq. (7) defines a function f*(z) on p (G,) such that
f* =fon[—1,1]. The function f* is analytic except pos-
sibly at T and —1, but since f* is continuous, it is analytic
at 1 and —1 also.

Letting f (x) = (T,F,) (vx) in Proposition 2 and then ap-
plying Proposition 1, we have shown

Proposition 3. For a fixed dual-carrier amplitude v, as-
sume that the IM coefficients ¢,y (v) of the zero-memory
characteristic F decay at least as fast as an exponential
0",0 < p < 1. Then the odd part F, is completely deter-
mined on [ —v, v] and is analytic on [ —v,v].

The function F, is obtained by summing the series in
Eq. (4) and then applying the inverse Chebyshev trans-
form U,.
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Proposition 3 is a worthwhile result if only because it
gives us a condition for F, to be smooth.

IV. Calculation of the Zero-Memory
Characteristic Assuming Exponentially
Decreasing IM Coefficients

The data point to the hypothesis

|clv(v)|=ApV, v=1305, "
where A >0 and 0 < p < 1. We have no information
about the signs of the ¢y, that is, about the phases of the

IMPs relative to the carrier components. Let us take two
cases, namely

Case 1. ¢y, on. (0) = Ap?™*
n=0,12 - -
Case 2. ¢y oni1 () = (—1)" Ap®n?
and calculate F, in each case. Fortunately, each F, is an
elementary function. Put f, (x) = F, (vx), —1=x = 1.

Then (T.f,) (x) = (T, F,) (vx).

Take Case 1. By Eq. (4),

(T.f,) (cos ) = 2A % p*™tcos (2n + 1) 8

n=90

= 2Ap (1 - pz) Ccos 9/[(1 + p2)2 - 4p2 cos?® 0]
(Tfo) (x) = Abx/(a® — 27)

where
a=1+p)/2p), b=(1-p)/(2p) (8)

By Proposition 1,
fo(x) = (UsT:fo) (x)
Yom
=2Aa*b / (@® — 2% -+ x®sin? §)~2 x cos 6 df
[

After doing the integration and returning to F,, we get
F,(x) = (Ab/a) (x/(av)), —0=x=0v 9)
where

®(x) = (1— x2)3/2Sin"x + (1 — x?)"x (10)
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It makes sense to put M = Ab/a, x, = av. Since F, (x) =
M (x/x,) for —v=1x=1v, we can compute ¢,y (v) in the
form Ap® for any lesser v by solving for A and p in terms
of M and v/x,.

Case 2 is similar, except that now

(T+fo) (x) = Aax/(b* + x?)
F,(x) = (Aa/b) ¥ (x/(bV)), —0=x=10 (11)
¥ (x) = (1 + x?)-32sinh-x + (1 + 2?)x (12)

We collect our calculations:

Proposition 4. Assume Case 1 for a particular v. Then
F,(x) =M & (x/x,), —v=x=0, where

M=A(~-p)/(1+p%
x, = v (L + p*)/(2p)
For all lesser v, Case 1 also holds, with
A=M(1— (v/x,))%

p = (v/%,)/[1 + (1 — (v/%,)*)%]

The same is true for Case 2, but & is replaced by ¥ and
the formulas are

M=A1+p)/(1—p?
%o =0 (1 — p*)/(2p)
A= M1+ (v/x,)")%
p = (v/%,)/[1 + (1 + (v/x,)")%]

The two cases are qualitatively different, since ® blows
up at =1, but ¥ is analytic on the whole real line.

V. Conclusions

If we know the whole sequence of IM coefficients
cw (v) of a zero-memory nonlinearity F acting on a sym-
metric dual carrier of amplitude v, then we have complete
knowledge of the odd part F, (x) for —v=x=1v. If the
¢,v decay at least as fast as an exponential, then F,, is analy-
tic on [—v,v]. We have calculated F, explicitly for the
cases ¢,y = Ap” and ¢;p = A (—1)% D o¥ which were sug-
gested by data. We do not know whether the resulting F,’s
have any physical meaning,

References

1. “Viking Dual Carrier Test Review,” DJM-72-141, Jet Propulsion Laboratory,
Pasadena, California, December 28, 1972 (JPL internal document).

2. Blachman, N. M., “Detectors, Bandpass Nonlinearities, and Their Optimization:
Inversion of the Chebyshev Transform,” IEEE Transactions on Information

Theory, Vol. IT-17, 1971, pp. 397—405.

JPL TECHNICAL REPORT 32-1526, VOL. XVII

111



Appendix

Proof of Proposition 1

Lemma. Let f € B,. Then for —v=x=w,

(2/7r)xj;lmjol/ﬂf(xcosﬁcos¢)cost9d9d¢ = ﬁzf (13)

Proof (Blachman). Think of ¢ and ¢ as being latitude
and longitude on the first octant Q of the unit sphere. Then
cos f cos ¢ is a Cartesian coordinate £, cosdf d = do,
the element of area, and the left side of Eq. (13) is

@ [ [ fat)do (14)

Now do = d£da, where o is longitude about a pole placed
where the £-axis meets the sphere. Thus (14) equals

(2/x)x /ds/ def (x2) —x/ Fat)d
:f,c

Define the operators M, J, and D:

(Mf) (x) = o (x), () (x /f (D (@) = F ()

Then the following formulas hold:

MT,T,=MT,T,=(2/x)] on B, (I5)
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TM=MT, on B, (16)
DT,=T.D on A, (A7)

By Fubini’s Theorem, Eq. (15) is just a restatement of
the lemma. Equations (16) and (17) are quickly verified.

Proof of Proposition 1. If feB, and T,f =0 almost
everywhere, then by Eq. (153), (2/=)Jf = M T,T,f = 0.

Hence f = 0 almost everywhere. This proves (a).

By definition, U, = («/2) T,DM. On A,
MU.T, = (r/2) MT,DMT,

= (/2) MT,DT,M
= (=/2) MT,T.DM

=DM =M
and

MT,U, = (x/2) MT,T,.DM
= JDM =M
Since we are dealing with analytic functions, (b) is proved.
Part (c) follows quickly from (a) and (b).

A different proof of Proposition 1(b) uses power series.
See Ref. 2.
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